CONTRIBUTION OF EXTERNAL AND INTERNAL Ca²⁺ TO CHANGES IN INTRACELLULAR FREE Ca²⁺ PRODUCED BY MITOGENS IN SWISS 3T3 FIBROBLASTS: THE ROLE OF DIHYDROPYRIDINE SENSITIVE Ca²⁺ CHANNELS

R. Olsen, M. Seewald, and G. Powis¹

Department of Pharmacology Mayo Clinic and Foundation 200 First Street, S.W. Rochester, MN 55905

Received May 17, 1989

Changes in intracellular free Ca^{2+} concentration ($[Ca^{2+}]_i$) produced by growth factors and mitogens have been studied using aequorin-loaded Swiss 3T3 cells. Decreasing free Ca^{2+} in the external medium by using EGTA had no significant effect on the increase in $[Ca^{2+}]_i$ produced by vasopresin, bradykinin, bombesin or prostaglandin E_2 , but reduced the increase in $[Ca^{2+}]_i$ produced by platelet derived growth factor (PDGF) by 58%, by prostaglandin E_1 44% and by prostaglandin $F_{2\alpha}$ 47%. The dihydropyridine Ca^{2+} -channel antagonist nifedipine at 10 μ M inhibited the $[Ca^{2+}]_i$ response to PDGF by 41% in both the presence of and in the absence of external Ca^{2+} . Methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate (BAY K8644), a Ca^{2+} -channel agonist, at 10 μ M produced an increase in $[Ca^{2+}]_i$ and decreased the $[Ca^{2+}]_i$ response to PDGF by 39%. Nifedipine did not block ${}^{45}Ca^{2+}$ uptake or release by inositol 1,4,5-trisphosphate in saponin-permeabilized Swiss 3T3 fibroblasts but BAY K8644 inhibited ${}^{45}Ca^{2+}$ release by inositol 1,4,5-trisphosphate. The results suggest that the increase in $[Ca^{2+}]_i$ caused by PDGF in Swiss 3T3 fibroblasts is due to the influx of external Ca^{2+} through dihydropyridine sensitive Ca^{2+} channels, as well as release of internal Ca^{2+} .

Eukaryotic cells maintain resting cytoplasmic free calcium concentrations ($[Ca^{2+}]_i$) at very low levels, around 10^{-7} M, while the extracellular Ca^{2+} concentration is around 10^{-3} M (1). Transient increases in $[Ca^{2+}]_i$ appear to be important as intracellular signals mediating the effects of a variety of hormones, neurotransmitters, growth factors and mitogens (1-3). An increase in $[Ca^{2+}]_i$ can be brought about either by the release of Ca^{2+} from specialized stores in the endoplasmic reticulum (4) by intracellular second messengers such as inositiol 1,4,5-trisphosphate (5) or arachidonic acid (6), or by the influx of external Ca^{2+} through plasma membrane Ca^{2+} channels (1,3).

<u>Abbreviations</u>

[Ca²⁺], intracellular free Ca²⁺ concentration; PDGF, platelet derived growth factor; DMEM, Dulbecco's modified Eagle's medium; PG, prostaglandin; EGF, epidermal growth factor; BAY K8644, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methylphenyl)pyridine-5-carboxylate.

¹To whom reprint requests should be sent.

There are two reported types of plasma membrane Ca²⁺ channels, voltage-gated Ca²⁺ channels and receptor-operated Ca²⁺ channels. Voltage-gated Ca²⁺ channels are similar in structure and function to other voltage gated ion channels (7) and are frequently associated with GTP-binding proteins which may modulate their activity (8). Voltage-gated Ca²⁺ channel activity can be subject to regulation by phosphorylation by 3',5'-cyclic AMP-dependent protein kinase (7). Less is known about receptor-operated Ca²⁺ channels. Their activity may be modulated by inositol phosphates acting on the internal surface of the plasma membrane (9,10) or by phosphorylation by receptor-dependent protein tyrosine kinases (11).

Growth factors and mitogens have been reported to increase $[Ca^{2+}]_i$ in a variety of cell types (12-17), including Swiss mouse 3T3 fibroblasts (19-26). The purpose of the present investigation was to identify the source of Ca^{2+} for changes in $[Ca^{2+}]_i$ caused by a number of growth factors and mitogens in Swiss 3T3 fibroblasts. The study has shown that agents acting on voltage-gated Ca^{2+} channels can affect $[Ca^{2+}]_i$ signalling by some growth factors.

MATERIALS AND METHODS

Vasopressin-8Arg, bradykinin, prostaglandins E_1 , E_2 , and $F_{2\alpha}$, and nifedipine were purchased from Sigma Chemical Co. (St. Louis, MO). Ionomycin, bombesin and myo-inositol 1,4,5-trisphosphate were obtained from Calbiochem (San Diego, CA). Platelet derived growth factor (PDGF) as the B chain homodimer was obtained from Bachem Inc. (Torrance, CA). Bay K8644 was a gift from Miles Laboratories (New Haven, CT). Aequorin was obtained from Dr. John Blinks, Mayo Clinic. Swiss 3T3 fibroblasts were provided by Dr. H.R. Herschmann, University of California, Los Angeles, CA. The cells were maintained in Dulbecco's modified Eagles medium (DMEM) containing 10% fetal calf serum and harvested at each passage with 0.5% trypsin and 0.5 mM EDTA before becoming confluent. Studies were conducted on cells between passages 37 and 58. Aequorin loading of the Swiss 3T3 fibroblasts employed a low Ca²⁺-centrifugation method as previously described (25). The loaded cells were plated at 10⁶ cells/35 mm culture dish (Falcon, Becton Dickinson, Lincoln Park, NJ) in DMEM containing 10% fetal calf serum and incubated 18 hr at 37°C, at which time the medium was replaced with DMEM without fetal calf serum for 2 hr. Light emitted from the aequorin loaded cells was measured as previously described (25) and a quantitative estimate of [Ca²⁺], obtained employing the calibration method for aequorin described by Allen and Blinks (27). In some studies cells were exposed to Ca²⁺-free DMEM with 0.5 mM EGTA for 5 min before adding growth factors. The growth factors, mitogens, and other agents were added to the culture dish dissolved in 0.2 to 1 ml of warm DMEM with or without Ca2+, as appropriate. The uptake and release of 45Ca2+ by saponin-permeabilized Swiss 3T3 cells was measured by the method of Gill and Cheu (28). Statistical analysis of the results used Students t-test and p < 0.05 was considered significant.

RESULTS

The increases in $[Ca^{2+}]_i$ caused by PDGF and some mitogens in Swiss 3T3 cells are shown in Figure 1. The concentration of the agents was chosen to give the maximal increase in $[Ca^{2+}]_i$. The $[Ca^{2+}]_i$ increase with the Ca^{2+} ionophore ionomycin (30) was employed as a positive control. The concentration of ionomycin chosen, 2 x 10^{-6} M, gave a submaximal and transient increase in $[Ca^{2+}]_i$. Higher concentrations of ionomycin produced larger and sustained increases in $[Ca^{2+}]_i$ (results not shown). Values for the peak increase in $[Ca^{2+}]_i$ are

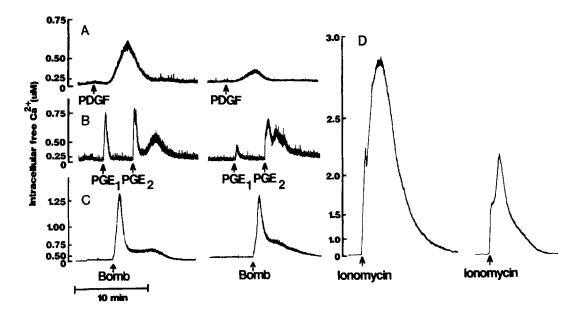


Figure 1. [Ca²⁺]; responses of Swiss 3T3 cells in the presence and absence of external Ca²⁺. Cells were exposed to A, PDGF, 3.3 x 10⁻⁹ M; B, PGE₁, 2 x 10⁻⁵ M, and PGE₂, 2 x 10⁻⁵ M; C, bombesin, 2 x 10⁻⁷ and D, ionomycin, 2 x 10⁻⁸ M, at the arrows. The left panel of each pair is with 1.8 mM Ca²⁺ in the medium and the right panel is 5 min after exposure to medium without Ca²⁺ containing 0.5 mM EGTA (free Ca²⁺ concentration < 10⁻⁸ calculated by the method of Fabiato (29).

given in Table 2. PDGF produced a slow rise in $[Ca^{2+}]_i$ with a delay of 1 min, that peaked at 3 min and lasted 6 min. Vasopressin, bombesin, PGE_1 , PGE_2 , and $PGF_{2\alpha}$ gave an immediate increase in $[Ca^{2+}]_i$ that lasted 4 to 5 min. With bradykinin, PGE_1 , $PGF_{2\alpha}$, and sometimes bombesin a secondary smaller increase in $[Ca^{2+}]_i$ with a peak at 3 min was also seen. Insulin and epidermal growth factor did not given an increase in $[Ca^{2+}]_i$ in the serum free Swiss 3T3 cells (results not shown).

Exposure of the cells to Ca^{2+} free medium containing 0.5 mM EGTA for 5 min had no significant effect on the $[Ca^{2+}]_i$ increase caused by vasopressin, bradykinin, bombesin or PGE_2 but reduced the $[Ca^{2+}]_i$ increase caused by PDGF, PGE_1 , and $PGF_{2\alpha}$ (Figure 1 and Table 1). The $[Ca^{2+}]_i$ response to 2 x 10⁻⁶ M ionomycin was inhibited 49% by the Ca^{2+} free medium with EGTA.

Ca²⁺ Channel Ligands and PDGF Induced [Ca²⁺]; Response

The dihydropyridine Ca²⁺ channel antagonist nifedipine (31) had no effect on resting $[Ca^{2+}]_i$ but produced a decrease in the $[Ca^{2+}]_i$ response to PDGF (Figure 2). With Ca²⁺ in the external medium the $[Ca^{2+}]_i$ response to 3.3 x 10⁻⁷ M PDGF was decreased from 0.93 ± 0.31 μ M (± S.D., n = 12) to 0.55 ± 0.03 μ M (n = 4, P < 0.01) by 10⁻⁵ M nifedipine. In the absence of external Ca²⁺ the $[Ca^{2+}]_i$ response to PDGF was decreased from 0.39 ± 0.11 μ M (n

	With Ca ²⁺ [Ca ²⁺] _i , μM	Without Ca ²⁺ [Ca ²⁺] _i , μM	
PDGF, $3.3 \times 10^{-9} \text{ M}$ Vasopressin, 10^{-7} M Bradykinin, $2 \times 10^{-7} \text{ M}$ Bombesin, $2 \times 10^{-7} \text{ M}$ PGE ₁ , $2 \times 10^{-5} \text{ M}$ PGE ₂ , 10^{-5} M PGF _{2a} , 10^{-5} M Ionomycin, $2 \times 10^{-6} \text{ M}$	0.93 ± 0.31 0.84 ± 0.22 1.23 ± 0.16 1.49 ± 0.18 0.80 ± 0.16 1.15 ± 0.27 1.54 ± 0.35 2.91 ± 0.54	$0.39 \pm 0.11^{a} (58)$ $0.64 \pm 0.08 (24)$ $1.23 \pm 0.29 (0)$ $1.32 \pm 0.13 (11)$ $0.45 \pm 0.09^{a} (44)$ $1.08 \pm 0.34 (6)$ $0.82 \pm 0.08^{a} (47)$ $1.49 \pm 0.20^{a} (49)$	

Table 1. Effect of Removing External Ca2+ on the Change in [Ca2+]; Caused by Various Agents in Swiss 3T3 Cells

= 12) to 0.23 ± 0.06 μ M (n = 5; P < 0.05) by nifedipine. Nifedipine did not affect the $[Ca^{2+}]_i$ response to vasopressin or bradykinin in the presence of external Ca^{2+} (results not shown). The dihydropyridine Ca^{2+} channel agonist BAY K8644 (32) by itself increased $[Ca^{2+}]_i$ to 0.50 ± 0.06 μ M (n = 4) in the presence of external Ca^{2+} and to 0.34 ± 0.04 (n = 5) in the absence of external Ca^{2+} . Surprisingly, BAY K8644 decreased the $[Ca^{2+}]_i$ response to PDGF in the presence of external Ca^{2+} to 0.57 ± 0.09 μ M (n = 4, P < 0.01 compared to PDGF alone), but had no effect on the $[Ca^{2+}]_i$ response to PDGF in the absence of external Ca^{2+} with a value of 0.38 ± 0.06 μ M (n = 5, P > 0.05 compared to PDGF alone).

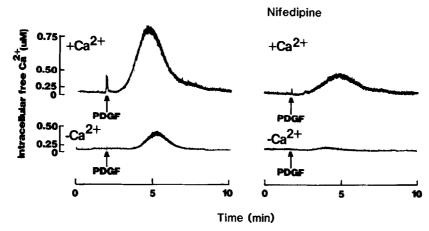


Figure 2. Effect of nifedipine on the PDGF-induced increase in [Ca²⁺]_i in Swiss 3T3 fibroblasts. Cells were exposed to 3.3 x 10⁹ M PDGF at the arrows. The upper panels show the [Ca²⁺]_i response in medium containing 1.8 mM Ca²⁺ and the lower panels the response in Ca²⁺ free medium with 0.5 mM EGTA. The right panels of each pair show the responses after 2 min exposure to 10⁻⁵ M nifedipine.

 $^{^{}a}$ p < 0.05 compared to control value with Ca $^{2+}$. Swiss 3T3 fibroblasts were exposed to the agents at the concentrations shown, either in DMEM containing 1.8 mM Ca $^{2+}$ (with Ca $^{2+}$) or after 5 min exposure to Ca $^{2+}$ free DMEM with 0.5 mM EGTA (without Ca $^{2+}$). Values are mean \pm S.D. of 6 to 12 preparations. Values in parenthesis are the percent decrease without Ca $^{2+}$ compared to the control value with Ca $^{2+}$.

Addition	6 min ⁴⁵ Ca ²⁺ pmol/10 ⁶ cells	7 min ⁴⁵ Ca ²⁺ pmol/10 ⁶ cells	Release %
	pmol/10 cells	pmo1/10 Cells	70
None <u>IP₃ at 6 min</u>	179 ± 8	164 ± 9	8
Control	167 ± 6	85 ± 5 ^a	49
Nifedipine, 10 μ M	188 ± 4	98 ± 24ª	48
BAY K8644, 10 μM	158 ± 2 ^b	123 ± 2ª	22
LaCl ₃ , 1 mM	424 ± 36 ^b	410 ± 37	3

Table 2. Effect of Ca²⁺ Channel Ligand on ⁴⁵Ca²⁺ Uptake and Release in Permeabilized Swiss 3T3 Cells

Ca²⁺ Channel Ligands and ⁴⁵Ca²⁺ Uptake and Release

The uptake and release of ⁴⁵Ca²⁺ was measured in saponin-permeabilized Swiss 3T3 fibroblasts (Table 2). Inositol 1,4,5-trisphosphate, 10 µM, was used to release the stored ⁴⁵Ca²⁺. Nifedipine, 10 µM, had no significant effect on the uptake or release of ⁴⁵Ca²⁺ in this system. BAY K8644, 10 µM, produced a small decrease in ⁴⁵Ca²⁺ uptake, and partly blocked the release of ⁴⁵Ca²⁺ by inositol 1,4,5-trisphosphate. LaCl₃, 1 mM, increased the uptake of ⁴⁵Ca²⁺ and completely blocked ⁴⁵Ca²⁺ release by inositol 1,4,5-trisphosphate.

DISCUSSION

We have investigated a number of agents reported to be growth factors or mitogens for Swiss 3T3 fibroblasts (25,33-36). Many of these agents have been found to increase $[Ca^{2+}]_i$ including PDGF (24,26), EGF (21), bombesin (26,37), prostaglandin $F_{2\alpha}$ (21,22), prostaglandin E_I (36), and vasopressin (21,26,37). Hesketh et al. (21) have reported that Ca^{2+} free medium and EGTA produces a decrease in the $[Ca^{2+}]_i$ response to vasopressin in Swiss 3T3 fibroblasts. In our study the use of Ca^{2+} -free medium and EGTA had no effect on the increase in $[Ca^{2+}]_i$ produced by vasopressin. A lack of an effect of EGTA on the $[Ca^{2+}]_i$ response to vasopressin in Swiss 3T3 fibroblasts has also been reported by Yamashita and Takai (36). We also found that external Ca^{2+} made no contribution to the increase in $[Ca^{2+}]_i$ produced by bradykinin in Swiss 3T3 fibroblasts, confirming our previous observations (25), or to the increase in $[Ca^{2+}]_i$ produced by bombesin and prostaglandin E_2 . The $[Ca^{2+}]_i$ response to bombesin has been found not to be noticeably decreased by EGTA in human small cell lung cancer cell lines (38).

p < 0.05 compared to 6 min value before IP3.

 $[^]b p < 0.05$ compared to 6 min value with no additions. Saponin permeabilized cells, 0.5 x $10^6/\text{ml}$, were incubated at 37°C in medium containing 50 μM total $^{45}\text{Ca}^{2+}$ buffered with EGTA to a free concentration of 100 nM, a 1 mM ATP generating system, and 0.5 mM 2,4-dinitrophenol, 10 μM antimycin A and 2 $\mu\text{g/ml}$ oligomycin to inhibit mitochondrial function. Cellular $^{45}\text{Ca}^{2+}$ uptake was measured by collecting the cells on a filter and was shown to be maximal by 6 min. Inositol-1,4,5-trisphosphate (IP₃), 10 μM , was added at 6.25 min and $^{45}\text{Ca}^{2+}$ remaining in the cells measured at 7 min. Nifedipine, BAY K8644 and LaCl₃ were added at 0 min. Values are mean \pm S.D. of 5 determinations each.

A number of other growth factors and mitogens we studied appeared able to cause both the release of internal Ca^{2+} and the influx of external Ca^{2+} , thus increasing $[Ca^{2+}]_i$. PDGF has been shown to cause the release of $^{45}Ca^{2+}$ from internal stores in Balb/c-3T3 fibroblasts (20). Moolneaar et al. (14) has reported that EGTA has no effect on the increase in $[Ca^{2+}]_i$ caused by PDGF in human fibroblasts. We found that in Swiss 3T3 fibroblasts EGTA decreased by more than half the $[Ca^{2+}]_i$ increase with PDGF. We also found that prostaglandins E_I and $F_{2\alpha}$ caused an increase in $[Ca^{2+}]_i$ that was dependent in part upon the presence of external Ca^{2+} . Yamashita and Takai (36) have reported that EGTA causes a marked inhibition of the increase in $[Ca^{2+}]_i$ caused by prostaglandin $F_{2\alpha}$ in Swiss 3T3 fibroblasts. Hesketh et al. (22), however, reported no effect of EGTA on the increase in $[Ca^{2+}]_i$ caused by prostaglandin E_I in Swiss 3T3 fibroblasts.

Swiss 3T3 fibroblasts are known to possess two types of voltage-gated Ca²⁺ channels, classified as L and T (39). We used the specific L type Ca2+ channel antagonist nifedipine (40) and the agonist BAY K8644 (31) to study the role of voltage-gated Ca2+ channels in PDGF action. Nifedipine was found to significantly decrease the [Ca²⁺], response to PDGF by Swiss 3T3 fibroblasts in Ca²⁺ containing medium, suggesting that Ca²⁺ entry may occur through voltage-gated Ca²⁺ channels activated by PDGF. BAY K8644, but not nifedipine, produce an increase in [Ca²⁺]; by itself. This was presumably by increasing the influx of Ca²⁺ through the same channels that were activated by PDGF and blocked by nifedipine. A small increase in [Ca²⁺], by BAY K8644 was also seen in the absence of external Ca²⁺ suggesting that BAY K8644 can also mobilize internal Ca²⁺. It is noteworthy that the increase in [Ca²⁺]; produced by BAY K8644 was relatively slow and exhibited a similar time course to the increase in $[Ca^{2+}]_i$ caused by PDGF. It was different from the rapid increase in $[Ca^{2+}]_i$ caused by, for example, bradykinin that increased [Ca²⁺]; exclusively by release by internal Ca²⁺. Although believed to act on voltage-gated Ca²⁺ channels there are reports that both nifedipine (41) and BAY K8644 (42) can act on mitogen activated voltage-insensitive Ca2+ channels in T lymphocytes.

Nifedipine decreased the [Ca²⁺]_i response to PDGF caused by the release of Ca²⁺ from internal stores when Ca²⁺ was absent from the external medium. An increased synthesis of inositol 1,4,5-trisphosphate has been suggested to be the mechanism by which PDGF produces a release of internal Ca²⁺ (43), although recent work has cast doubt on this mechanism (44,45). Nifedipine did not block the release of Ca²⁺ by inositol 1,4,5-trisphosphate in permeabilized Swiss 3T3 fibroblasts. Nifedipine has been reported not to block inositol-1,4,5-trisphosphate induced Ca²⁺ release in other cell types (43). Whether nifedipine could be having a direct effect on the binding of PDGF to its receptor, or on the coupling of the PDGF receptor to its effector mechanisms is not known. The weight of the evidence suggests, however, that the main action of nifedipine in preventing the [Ca²⁺]_i increase with PDGF is to block a plasma membrane Ca²⁺ channel responsible for Ca²⁺ entry.

ACKNOWLEDGMENTS

This work was supported by NCI Grant CA 42286. The excellent secretarial assistance of Ms. Wanda Rhodes is gratefully acknowledged.

REFERENCES

- 1. Carafoli, E. (1987) Ann. Rev. Biochem. 56, 395-433.
- 2. Exton, J.H. (1988) FASEB J. 2, 2670-2676.
- 3. Rasmussen, H. (1986) N. Eng. J. Med. 314, 1094-1101, 1164-1176.
- Volpe, P., Krause, K.-H., Hashimoto, S., Zorato, F., Pozzan, T., Meldolesi, J. and Lew, D.P. (1988) Proc. Natl. Acad. Sci. 85, 1091-1095.
- 5. Berridge, M.J. (1987) Biochim. Biophys. Acta 907, 33-45.
- Seewald, M.J. and Powis, G. (1989) Proc. 2nd Int. Intracell. Signalling Symp., Washington, DC, May.
- 7. Catterall, W.A. (1988) Science 242, 50-61.
- 8. Yatani, A., Codina, J., Imoto, Y., Reeves, J.P., Birnbaumer, L. and Brown, A.M. (1987) Science 238, 1288-1292.
- 9. Irvine, R.F. and Moor, R.M. (1986) Biochem. J. 240, 917-920.
- 10. Putney, J.W., Jr. (1986) Cell Calcium 7, 1-12.
- 11. Chapron, Y., Cochet, C., Crouzy, S., Jullien, T., Keramidas, M. and Verdetti, J. (1989) Biochem. Biophys. Res. Commun. 158, 527-533.
- 12. Hepler, J.R., Nakahato, N., Lovenberg, T.W., Di Guiseppi, J., Herman, B., Earp, H.S. and Harden, T.K. (1987) J. Biol. Chem. 262, 2951-2956.
- 13. Jackson, T.R., Hallam, T.J., Downes, C.P. and Hanley, M.R. (1987) EMBO J. 6, 49-54.
- Moolenaar, W.H., Tertoolen, L.G.J. and de Laat, S.W. (1984) J. Biol. Chem. 259, 8066-8069.
- 15. Osugi, T., Uchida, S., Imaizumi, T. and Yoshida, H. (1986) Brain Res. 379, 84-89.
- Pidikiti, N., Gamero, D., Gamero, J. and Hassid, A. (1985) Biochem. Biophys. Res. Commun. 130, 807-813.
- 17. Tilly, B.C., Van Paridon, P.A., Verlaan, I., de Laat, S.W. and Moolenaar, W.H. (1989) Biochem. J. 252, 857-863.
- 18. Mendoza, S.A., Schneider, J.A., Lopez-Rivas, A., Sinnett-Smith, J.W. and Rozengurt, E. (1986) J. Cell. Biol. 102, 2223-2233.
- 19. Reiser, G. and Hamprecht, B. (1985) Pflügers Arch. 405, 260-264.
- 20. Franz, C.N. (1985) Exp. Cell. Res. 158, 287-300.
- 21. Hesketh, T.R., Moore, J.P., Morris, J.D., Taylor, H.V., Rogers, J., Smith, G.A. and Metcalfe, J.C. (1985) Nature 313, 481-484.
- 22. Hesketh, T.R., Morris, J.D.H., Moore, J.P. and Metcalfe, J.C. (1988) J. Biol. Chem. 263, 11879-11886.
- Lopez-Rivas, A. and Rozengurt, E. (1983) Biochem. Biophys. Res. Commun. 114, 240-247.
- 24. McNeil, P.L., McKenna, M.P. and Lansing Taylor, D. (1985) J. Cell. Biol. 101, 372-379.
- Olsen, R., Santone, K., Melder, D., Oakes, S., Abraham, R. and Powis, G. (1988) J. Biol. Chem. 263, 18030-18035.
- 26. Rozengurt, E. and Mendoza, B.A. (1985) J. Cell. Sci. 3, 229-242.
- Allen, D.G. and Blinks, J.R. (1979) In Detection and Measurement of Free Ca²⁺ in Cells (Ashley, C.C. and Campbell, A.K., eds.), pp. 159-174, Elsevier-North Holland, Amsterdam.
- 28. Gill, D.L. and Chueh, S.-H. (1985) J. Biol. Chem. 260, 9289-9297.
- 29. Fabiato, A. (1988) Methods in Enzymol. 31, 378-417.
- 30. Kaufmann, R.F., Taylor, R.W. and Pfeiffer, D.R. (1980) J. Biol. Chem. 255, 2735-2739.
- 31. Towart, R. and Schramm, M. (1985) Biochem. Soc. Symp. 50, 81-95.
- 32. Schramm, M., Thomas, G., Towart, R. and Franckowiak, G. (1983) Nature 303, 535-537.

- 33. Jimenez de Asua, L., Otto, A.M., Lindgren, J.A. and Hammerström, S. (1983) J. Biol. Chem. 258, 8774-8780.
- 34. Rozengurt, E. and Pettican, P. (1979) Proc. Natl. Acad. Sci. USA 76, 1284-1287.
- 35. Rozengurt, E. and Sinnett-Smith, J. (1983) Proc. Natl. Acad. Sci. USA 80, 2936-2940.
- 36. Yamashita, T. and Takai, Y. (1987) J. Biol. Chem. 262, 5536-5539.
- Mendoza, S.A., Lopez-Rivas, A., Sinnett-Smith, J.W. and Rozengurt, E. (1986) Exp. Cell. Res. 164, 536-545.
- 38. Heikkila, R., Trepel, J.B., Cultitta, F., Neckers, L.M. and Sausville, E.A. (1987) J. Biol. Chem. 262, 16456-16460.
- 39. Chen, C., Corbley, M.J., Roberts, T.M. and Hess, P. (1988) Science 239, 1024-1026.
- 40. Nowycky, M.C., Fox, A.P. and Tsien, R.W. (1985) Nature 316, 440-443.
- 41. Birx, D.L., Berger, M. and Sleisher, T.A. (1984) J. Immunol. 133, 2904-2909.
- 42. Young, W., Chen, J., Jung, F. and Gardner, P. (1988) Mol. Pharmacol. 34, 239-244.
- 43. Biden, T.J., Pretki, M., Irvine, R.F., Berridge, M.J. and Wollheim, C.B. (1984) Biochem. J. 223, 467-473.
- 44. Nanberg, E. and Rozengurt, E. (1988) EMBO J. 7, 2741-2747.
- 45. Williams, L.T. (1989) Science 243, 1564-1570.